M1.(a) $2 \mathrm{MnO}_{4}^{-}+16 \mathrm{H}^{+}+5 \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \rightarrow 2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}+10 \mathrm{CO}_{2}$

$$
\mathrm{Mn}^{2+} \mathrm{OR} \mathrm{Mn}^{3+}
$$

If catalyst incorrect can only score M1 and M3
(Possible because) Mn can exist in variable oxidation states
E_{a} lowered because oppositely charged ions attract
These marks can be gained in any order
Mn^{3+} (reduced) to Mn^{2+} by $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ / equation
M5 may appear before M2
Mn^{2+} (oxidised (back)) to Mn^{3+} by MnO_{4}^{-}/ equation
M5 and M6 can be scored in unbalanced equations or in words showing:

$$
\begin{aligned}
& \mathrm{Mn}^{3+}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-} \rightarrow \mathrm{Mn}^{2+} \\
& \mathrm{Mn}^{2+}+\mathrm{MnO}_{4}^{-} \rightarrow \mathrm{Mn}^{3+}
\end{aligned}
$$

(b) Graph marks

Cannot score graph marks (M1 and M2) if no axes and / or no labels

Explanation marks

Slope / rate increases as catalyst (concentration) forms

Slope / rate decreases as (concentration) of MnO_{4}^{-}ions / reactant(s) decreases (OR reactants are being used up)

Explanation marks can be awarded independent of graph.

M2.(a) $2 \mathrm{MnO}_{4}^{-}+16 \mathrm{H}^{+}+5 \mathrm{C}_{2} \mathrm{O}_{4}^{2-} \rightarrow 2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}+10 \mathrm{CO}_{2}$
For all species correct / moles and species correct but
charge incorrect

For balanced equation including all charges (also scores first mark)
(b) Manganate(VII) ions are coloured (purple)

All other reactants and products are not coloured (or too faintly coloured to detect)
Allow (all) other species are colourless
Allow Mn ${ }^{2+}$ are colourless / becomes colourless / pale pink
(c) The catalyst for the reaction is a reaction product

Reaction starts off slowly / gradient shallow

Then gets faster/rate increases / gradient increases
Allow concentration of MnO_{4}^{-}decreases faster / falls rapidly
(d) Mn^{2+} ions
(e) $\quad \mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+4 \mathrm{Mn}^{2+} \rightarrow 5 \mathrm{Mn}^{3+}+4 \mathrm{H}_{2} \mathrm{O}$

Allow multiples

$$
2 \mathrm{Mn}^{3+}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-} \rightarrow 2 \mathrm{Mn}^{2+}+2 \mathrm{CO}_{2}
$$

M3.(a) Negative ions repel one another
(b) Positive ions attract negative ions in catalysed process

Allow activation energy decreases.
Allow alternative route with lower E_{a} Ignore references to heterogenous catalysis.
(c) $\mathrm{S}_{2} \mathrm{O}_{8}^{2-}+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{SO}_{4}{ }^{2-}$

Allow multiples including fractions. Ignore state symbols.
(d) $\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}+2 \mathrm{I}^{-} \longrightarrow 2 \mathrm{SO}_{4}{ }^{2-}+\mathrm{I}_{2}$

Allow multiples including fractions.
Ignore state symbols.
Allow the correct equation involving I_{3}^{-}
$\mathrm{S}_{2} \mathrm{O}_{8}^{2-}+3 \mathrm{I}^{-} \longrightarrow 2 \mathrm{SO}_{4}^{2-}+\mathrm{I}_{3}^{-}$

M4.(a) Variable / many oxidation states
(b) $\mathrm{V}_{2} \mathrm{O}_{5}+\mathrm{SO}_{2} \rightarrow \mathrm{~V}_{2} \mathrm{O}_{4}+\mathrm{SO}_{3}$

Equations can be in either order Allow multiples
$\mathrm{V}_{2} \mathrm{O}_{4}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{~V}_{2} \mathrm{O}_{5}$
(c) (i) In a different phase / state from reactants
(ii) Impurities poison / deactivate the catalyst / block the active sites Allow (adsorbs onto catalyst AND reduces surface area)
(d) (i) The catalyst is a reaction product
(ii) $\mathrm{Mn}^{2+} / \mathrm{Mn}^{3+}$ ion(s)
(iii) $4 \mathrm{Mn}^{2+}+\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+} \rightarrow 5 \mathrm{Mn}^{3+}+4 \mathrm{H}_{2} \mathrm{O}$

Equations can be in either order

$$
2 \mathrm{Mn}^{3+}+\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \rightarrow 2 \mathrm{Mn}^{2+}+2 \mathrm{CO}_{2}
$$

M5.(a) Cobalt has variable oxidation states
Allow exists as Co (II) and Co (III)
(It can act as an intermediate that) lowers the activation energy
Allow (alternative route with) lower E_{a}
$\mathrm{CH}_{3} \mathrm{CHO}+2 \mathrm{Co}^{3+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{COOH}+2 \mathrm{Co}^{2+}+2 \mathrm{H}^{+}$
Allow multiples; allow molecular formulae
Allow equations with $\mathrm{H}_{3} \mathrm{O}+$

$$
\frac{1}{2} \mathrm{O}_{2}+2 \mathrm{Co}^{24}+2 \mathrm{H}^{+} \rightarrow 2 \mathrm{Co}^{34}+\mathrm{H}_{2} \mathrm{O}
$$

(b) (i) $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+3 \mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2} \rightarrow\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)_{3}\right]^{2+}+6 \mathrm{H}_{2} \mathrm{O}$

Do not allow en in equation, allow $\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}$

The number of particles increases / changes from 4 to 7
Can score M2 and M3 even if equation incorrect or missing provided number of particles increases

So the entropy change is positive / disorder increases / entropy increases
(ii) Minimum for M1 is 3 bidentate ligands bonded to Co

Ignore all charges for M1 and M3 but penalise charges on any ligand in M2

Ligands need not have any atoms shown but diagram must show 6 bonds from ligands to Co, 2 from each ligand

Minimum for $\mathbf{M 2}$ is one ligand identified as $\mathrm{H}_{2} \mathrm{~N}----\mathrm{NH}_{2}$
Allow linkage as $-\mathrm{C}-\mathrm{C}$ - or just a line.

Minimum for M3 is one bidentate ligand showing two arrows from separate nitrogens to cobalt
(c) Moles of cobalt $=(50 \times 0.203) / 1000=\underline{0.01015} \mathrm{~mol}$ Allow 0.0101 to 0.0102

```
Moles of AgCl = 4.22/143.4=0.0294
    Allow 0.029
    If not AgCl (eg AgCl2 or AgNO
    score M1, M4 and M5
```

 Ratio \(=\mathrm{Cl}^{-}\)to \(\mathrm{Co}=2.9: 1\)
 Do not allow 3 : 1 if this is the only answer but if 2.9:1 seen
 somewhere in answer credit this as M3
 $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]_{3}$ (square brackets not essential)

Difference due to incomplete oxidation in the preparation
Allow incomplete reaction.
Allow formation [Co($\left.\left.\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$ etc.
Some chloride ions act as ligands / replace NH_{3} in complex.
Do not allow 'impure sample' or reference to practical deficiencies

M6.(a) Stoppered flask or similar with side arm
Allow gas outlet through stopper.

Calibrated container for collection eg gas syringe

Allow collection over water, but must use calibrated vessel for collection.

Lose 1 mark if apparatus is not gas tight.
(b) Plot a graph of 'volume (of gas)' against 'time'

Determine the slope (gradient) at the beginning
(c) Repeat with same volume or concentration of hydrogen peroxide and at the same temperature

Ignore references to results.
Do not allow 'keep everything the same' or words to that effect. Must mention volume or concentration and temperature.

Add cobalt(II) chloride to one experiment

